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Continuous-time formulation of reaction-diffusion processes on heterogeneous metapopulations
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We present the derivation of the continuous-time equations governing the limit dynamics of discrete-time
reaction-diffusion processes defined on heterogeneous metapopulations. We show that, when a rigorous time
limit is performed, the lack of an epidemic threshold in the spread of infections is not limited to metapopula-
tions with a scale-free architecture, as it has been predicted from dynamical equations in which reaction and

diffusion occur sequentially in time.
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The analysis of the spread of infectious diseases on com-
plex networks has become a central issue in modern epide-
miology [1] and, indeed, it was one of the main motivations
for the development of percolation theory [2]. While the ini-
tial approach was focussed on local contact networks [3-6],
i.e., social networks within single populations (cities, urban
areas), a new approach has been recently introduced for deal-
ing with the spread of diseases in ensembles of (local) popu-
lations with a complex spatial arrangement and connected by
migration [7]. Such sets of connected populations living in a
patchy environment are called metapopulations in ecology,
and their study began in 1967 with the theory of island bio-
geography [8].

In some recent models of epidemic spreading, the location
of the patches in space is treated explicitly thanks to the
increasing of computational power (see, for instance, [9]). In
[7,10,11], however, an alternative approach based on the for-
malism used in the statistical mechanics of complex net-
works is presented. Precisely, the topology of the spatial net-
work of local populations (nodes) is mathematically encoded
by means of the connectivity (degree) distribution p(k), de-
fined as the probability that a randomly chosen node has
degree k. Moreover, each node contains two types of par-
ticles: A particles corresponding to susceptible individuals,
and B particles that correspond to infected ones. Within each
node, a transmission process (reaction) occurs between par-
ticles of different type, and migratory flows take place
among nodes (diffusion) at constant rates. Therefore, al-
though the detailed description of the spatial network is lost,
the approach offers an elegant description of the epidemic
spread in terms of densities of A particles and B particles in
patches of degree k at time , here denoted by p,i(f) and
pr(t) respectively.

The reaction and diffusion (RD) processes modeling the
spread of an infectious disease are considered as a two-step
process in [7,11]. First, inside each network node, the reac-
tion takes place under the assumption of a homogenous mix-
ing and conserving the total number of particles. In particu-
lar, the spread of the infection within a population follows
the dynamics of a susceptible-infected-susceptible model
which is described by the reactions
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corresponding to the recovering (at a rate w) and transmis-
sion (at a rate ) processes, respectively. Second, after the
reaction, fixed fractions 0<D, =<1 and 0<Dg=<1 of each
type of particles (A and B, respectively) randomly migrate
along the links departing from the node.

This two-step formulation of the RD processes will play a
crucial role in the following and reflects the fact that the
progress of the infection at the metapopulation level is con-
ceived as a discrete-time process. The key point is that, since
the continuous-time limit of this two-step process is not well
defined, different predictions can result under each time for-
mulation. To see this, let us write the discrete-time equations
governing the evolution of p, ; and pg; from time 7 to time
t+ 7 according to the previous two-step formulation. Addi-
tionally, following [7], two different transmission mecha-
nisms will be considered. If the transmissibility of the infec-
tion does not depend on the local population size p,=p,
+pp.1» then the transmission rate is constant (3,=,) regard-
less of the node degree (type-I transmission) whereas, if
there is a saturation in the number of contacts per time inter-
val, the transmission rate is B;= B,/ p (type-1I transmission),
which is the usual assumption in epidemiology. Since in a
discrete-time setting we must talk about probabilities instead
of rates, the model equations read as

pai(t+7) =1 =Dy)(psr+ TPk = TBrPA KPBK)
+kDy >, (Pax + THPp k!
k’
1

o (2)

— B paxppi) Pk’ |K)

ppi(t+ 1) = (1 = Dp)(pg i+ TBPAPB K — TIPE L)
+kDp >, (Pgx + TBx Pax PB A’
k/
1

o (3)

— Tpp 1) P(K'[k)

where 7 and 78, are, respectively, the probability of recov-
ering and of transmission during the time interval (z,7+ 7),
and P(k'|k) is the conditional probability that a node of de-
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gree k is connected to a node of degree k’. Finally, note that
diffusion from a node of degree k' occurs just at the end of
the time interval where a fixed fraction D; of i particles move
into a randomly chosen neighbor location with probability
1/k’. Hence, diffusion is not modeled as a stochastic process
that can happen at any moment within a time interval of
length 7.

A crude continuous-time approximation to the previous
equations consists in taking d,p; ;(t) = p; 1(1+1) — p; 1(¢). This
approximation of the time derivative, widely used in the lit-
erature, leads to the RD equations presented in [7] (and its
supplementary information) which have the same equilibria
as Egs. (2) and (3). However, whereas it works for one-step
processes, it fails when dealing with composite Markov pro-
cesses as the one described by this two-step process for the
spread of infectious diseases. A basic assumption when simu-
lating continuous-time processes is that one chooses the
length 7 of the time interval sufficiently small to ensure that
the probability of more than one event occurring to the same
individual is negligible [12,13]. That is, all of the processes
are disjoint (mutually exclusive) events which, in terms of
the model, is equivalent to say that a given particle either
reacts (i.e., becomes infected) or diffuses to another node
during a time interval 7. By contrast, terms like (1
—D,)upp, occurring in the limit equations obtained using
the previous approximation of the time derivative come from
the product of probabilities of the events “react” (at a rate )
of a B particle and “not diffuse” of the resulting A particle. In
other words, “react” and “diffuse” are not considered as mu-
tually exclusive events. In particular, this implies that, for
both kinds of particles, the limit of [p; ;(t+7)—p;(1)]/ T as T
approaches zero is not defined due to the existence of un-
bounded terms of the form p, ;(r)/ 7 in the expression of the
incremental quotient for each type of particle, and hence the
equations obtained by approximating d,p;(r) = p;i(t+1)
—p; (1) do not correspond to the continuous-time limit of the
discrete equations (2) and (3).

On the other hand, if reaction and diffusion processes take
place simultaneously, one must consider the diffusion prob-
ability 7D instead of the fraction D of diffusing particles. In
this case, the limit of the incremental quotients as 7— 0 be-
comes well-defined and, after replacing D with 7D in Egs.
(2) and (3), these become

1
3pax(t) = pg (e = Brpax) — Dapai+ kD>, P(k' |k)PpA,k’ )
k’

(4)

1
3, (1) = pg k(BePay — ) — Dgpp i + kD>, P(k' |k)PpB,k’ .
k’

(5)

These equations recover the classical expression of RD equa-
tions as a sum of two independent contributions: Reaction
and diffusion, plus the contribution of diffusing particles
from the nearest neighbors of nodes of degree k. For the sake
of brevity, from now on we will consider strictly positive
diffusion rates (D,,Dgz>0).
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In uncorrelated networks, P(k'|k)=k'p(k")/{k) is the de-
gree distribution of nodes that we arrive at by following a
randomly chosen link [14], and the previous equations be-
come

k
3ipax = Pp (= BiPar) = Da\ pax— @PA , (6)

k
3.k = P Brpax— ) — Dg| ppi— @PB , (7)

where (ky=2,kp(k) is the average network degree, and p;
=3p(k)p; is the average number of i particles per network
node (i=A,B). Note that, after multiplying Egs. (6) and (7)
by p(k) and summing over all k, it follows that

d
E[pA(t) +pp(1)]=0,

that is, the total density of particles p(1)=p,(r)+pg(2) re-

mains constant with ¢ and equal to p°, the initial average

number of particles per node, in agreement with the conser-

vation of the number of particles characterizing reactions (1).
The equilibria of Egs. (6) and (7) satisfy

pp (1= Bipy,) =DA<pA,k— @p:), (8)

. . % k
p;,k(ﬁzpz,k_ M) =DB<pB’k_ @P:)’ (9)

where pj:Ekrp(k’)p;kk, is the average number of i particles
per network node at equilibrium. A simple inspection of

these equations shows that the disease-free equilibrium den-
sities are

k

py,=0 and p:,k=@p0 Vv k. (10)

On the other hand, there exists an endemic equilibrium
whenever the following equality holds:

Bk
ARG

In type-II transmission, condition (11) leads to the following
expressions of the densities of i particles (i=A,B) in nodes
of degree k,

*k *k * %
pA,kzépk’ pB,k=(1_é)pk’ (12)
with p::kp‘)/ (k) being the density of particles at equilibrium
in nodes of degree k. Moreover, according to (12), the mean
density of each type of particle in the network is p:
=p°u/ B, and p;:(l— /! Bo)p®. From these expressions it
follows that the condition for the existence of an endemic
equilibrium is

(11)

< Bo.

Moreover, it is not difficult to see that the dominant eigen-
value \; of the Jacobian matrix of Egs. (6) and (7) at the
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TABLE I. Equilibrium densities in type-I transmission for Dy=Dg=1, u=2, By=1.5, (k)=2.6, and dif-
ferent initial densities p® of particles. In case (i), p’=1.07 and the disease-free equilibrium is the only
stationary solution. In cases (ii) and (iii), p’=1.3 and 6, respectively, and an endemic equilibrium is the only

stable stationary solution.

Equilibrium densities Case (i) Case (ii) Case (iii)
p: . 0.411538 0.475319 1.045600
pA ) 0.823077 0.929683 1.278126
pA 5 1.234615 1.331202 1.351427
pA4 1.646154 1.612028 1.385826
pB | 0 0.024681 1.262092
pB ) 0 0.070317 3.337259
pB3 0 0.168798 5.571650
Py 0 0.387972 7.844944

disease-free equilibrium (10) is \;=max(8,—u,0). Hence,
the disease-free equilibrium is unstable as long as there ex-
ists an endemic equilibrium.

Under type-I transmission, a sufficient condition for the
disease-free equilibrium (10) to be unstable is (see the Ap-
pendix for details)

0_ (K Dy+p)
kmax BO

where k., is the maximum degree in the metapopulation.
Hence, for fixed reaction rates w and S, a high enough
density of particles and/or a large enough maximum degree
in the network guarantee the instability of the disease-free
equilibrium independently of the topological fluctuations of
the network. In the limit of very large networks with
bounded average degree (k), this sufficient condition implies
the lack of an epidemic threshold for degree distributions
with k., — % as, for instance, exponential and scale-free de-
gree distributions. On the other hand, it is clear that an en-
demic equilibrium cannot satisfy condition (11) since, in this
type of transmission, ,8:= Bo which implies that the left-hand
side (lhs) of (11) does not depend on k. Therefore, at an
endemic equilibrium, both sides of Egs. (8) and (9) must be
different from zero. This fact implies that p ' k<(>)<k> Py
whenever ka>(<)<k>pB That is, neither pAk nor ka are
linear in k as it is the case in type-II transmission. In the
particular case D, =Dy it follows, moreover, that p;:=%p°.
To illustrate these predictions under type-I transmission,
let us consider a metapopulation with degree distribution
p(1)=0.1, p(2)=0.3, p(3)=0.5, p(4)=0.1. Moreover, let us
assume D, = DB 1, u=2, ,80 1.5, and three different initial
densmes (1) pA (=052, ka—O 55; (ii) pA k—ka—O 65; (iii)
pA = pB «=3. Note that we are taking ,u>,80 which does not
allow for the existence of an endemic equilibrium in type-II
transmission. In case (i), p°=3;_,p(k)(p} .+ p3,)=1.07 and
the only stationary solution corresponds to a stable disease-
free equilibrium. In case (ii), p°=1.3 and it is equal to the
right-hand side (rhs) of condition (13). For this value of p°,
the existence of a stable endemic equilibrium relatively far
from the disease-free equilibrium (pZ%O.lS) clearly shows

; (13)

that condition (13) is sufficient but not necessary. In case
(iii), p°=6 which largely satisfies the sufficient condition for
the instability of the disease- free equlhbrlum From Table I it
follows that the densities p* 4 are linear in k at the disease-
free equilibrium, whereas they are clearly sublinear in k at
the endemic equilibrium. Consequently, at this equilibrium,
pz , are superlinear in k with p: ot pz k=kp0/ (k).

‘In this Brief Report we have anafyzed the suitability of
the continuous-time approximation of difference equations
modeling the time evolution of two processes, reaction and
diffusion, in metapopulations which take place sequentially.
The conclusion is that having sequential processes during
each time interval leads to an undefined continuous approxi-
mation of the discrete-time equations. However, if reaction
and diffusion processes are assumed to take place simulta-
neously, one obtains well-defined RD differential equations
which, as expected, are consistent with the conservation of
the number of particles during the progress of the epidemic
disease in a metapopulation. In this sense, it is important to
realize that Egs. (4) and (5) are not the continuous-time limit
of Egs. (2) and (3) since the latter are derived under the
assumption of dispersal of individuals at the end of each time
interval, once reactions (1) have taken place. In particular,
this means that the latter equations cannot be obtained from
the former ones by discretizing time.

The difference in the predictions of both formulations of
the diffusion process arises for the type-I (nonsaturated)
transmission of infection in uncorrelated networks. On the
one hand, in the limit of infinite metapopulation sizes, a lack
of an epidemic threshold is predicted for scale-free architec-
tures according to the dynamics of sequential RD processes
governed by Egs. (2) and (3) with 7=1 (cf. [7]). On the other
hand, topological fluctuations of the network architecture
measured in terms of (k%) turns out to be not essential in
simultaneous RD processes described by Egs. (4) and (5). In
this case, the lack of an epidemic threshold is also predicted
in the limit of infinite network sizes for any degree distribu-
tion with bounded mean degree but with an unbounded
maximum degree.

The explanation for this disagreement between both pre-
dictions is that continuous diffusion is more effective for the
spread of infectious diseases in metapopulations than that

012902-3



BRIEF REPORTS

occurring at discrete times. In terms of the asymptotic behav-
ior of the model, although this higher effectiveness is not
noticeable when there is saturation in the transmission of the
infection, it becomes crucial when such a saturation is not
present.

Since the simultaneity of the reaction and diffusion pro-
cesses seems to be the case when migratory flows occur con-
tinuously in time among local populations, from a modeling
point of view the present analysis and discussion about the
predictions obtained under two different approaches is not
only a technical issue but one that we think must be consid-
ered in the analysis of more refined infection models defined
on heterogeneous metapopulations.

The author thanks J. L. Garcia-Domingo for pointing out
the model in Ref. [7] and for discussions on complex net-
works. This work has been partially supported by Grant No.
MTM2005-07660-C02-02 of the Spanish government and by
the project FP6-2003-NEST-PATH-1 “Unifying Networks
for Science and Society” of the Sixth European Framework
Programme.

APPENDIX

The Jacobian matrix of the system (6) and (7) at the
disease-free equilibrium given by (10) is of the form
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p (A c)
DF — 0 B )

where A, B, C, and 0 are k,,, X k,,x matrices with 0 being
the zero matrix. Therefore, the characteristic polynomial of
Jpr factorizes as p;(N)=ps(\)pg(N). In type-1 transmission,
PaN)=N(\+D,)fmax~1 and the roots \, of pz(\) are simple
and satisfy

iﬂ “-D <M< E,B )
) 0P 4 BT M k ) 0P 4 BT M
for k=1, ... ,knh—1, while the larger one satisfies

km X
A > _aIBOP: —(Dg+p). (A1)

max < k)

Finally, since the roots of p,(\) are nonpositive, the suffi-
cient condition (13) follows from imposing the non-
negativity of the rhs of (A1), which is clearly sufficient but
not necessary for the positivity of )\kmax.
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